GerO, a putative Na+/H+-K+ antiporter, is essential for normal germination of spores of the pathogenic bacterium Clostridium perfringens.

نویسندگان

  • Daniel Paredes-Sabja
  • Peter Setlow
  • Mahfuzur R Sarker
چکیده

The genome of the pathogen Clostridium perfringens encodes two proteins, GerO and GerQ, homologous to monovalent cation transporters suggested to have roles in the germination of spores of some Bacillus species. GerO and GerQ were able to transport monovalent cations (K(+) and/or Na(+)) in Escherichia coli, and gerO and gerQ were expressed only in the mother cell compartment during C. perfringens sporulation. C. perfringens spores lacking GerO were defective in germination with a rich medium, KCl, L-asparagine, and a 1:1 chelate of Ca(2+) and dipicolinic acid (DPA), but not with dodecylamine, and the defect was prior to DPA release in germination. All defects in gerO spores were complemented by ectopic expression of wild-type gerO. Loss of GerQ had much smaller effects on spore germination, and these effects were most evident in spores also lacking GerO. A modeled structure of GerO was similar to that of the E. coli Na(+)/H(+) antiporter NhaA, and GerO, but not GerQ contained two adjacent Asp residues thought to be important in the function of this group of cation transporters. Replacement of these adjacent Asp residues in GerO with Asn reduced the protein's ability to complement the germination defect in gerO spores but not the ability to restore cation transport to E. coli cells defective in K(+) uptake. Together, these data suggest that monovalent cation transporters play some role in C. perfringens spore germination. However, it is not clear whether this role is directly in germination or perhaps in spore formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens.

Clostridial spore germination requires degradation of the spore's peptidoglycan (PG) cortex by cortex-lytic enzymes (CLEs), and two Clostridium perfringens CLEs, SleC and SleM, degrade cortex PG in vitro. We now find that only SleC is essential for cortex hydrolysis and viability of C. perfringens spores. C. perfringens sleC spores did not germinate completely with nutrients, KCl, or a 1:1 chel...

متن کامل

The Clostridium perfringens germinant receptor protein GerKC is located in the spore inner membrane and is crucial for spore germination.

The Gram-positive, anaerobic, spore-forming bacterium Clostridium perfringens causes a variety of diseases in both humans and animals, and spore germination is thought to be the first stage of C. perfringens infection. Previous studies have indicated that the germinant receptor (GR) proteins encoded by the bicistronic gerKA-gerKC operon as well as the proteins encoded by the gerKB and gerAA gen...

متن کامل

Role of GerKB in germination and outgrowth of Clostridium perfringens spores.

Previous work indicated that Clostridium perfringens gerKA gerKC spores germinate significantly, suggesting that gerKB also has a role in C. perfringens spore germination. We now find that (i) gerKB was expressed only during sporulation, likely in the forespore; (ii) gerKB spores germinated like wild-type spores with nonnutrient germinants and with high concentrations of nutrients but more slow...

متن کامل

Effect of lysozyme on ionic forms of spores of Clostridium perfringens type A.

H spores of Clostridium perfringens type A (two strains) were more sensitive to germination by lysozyme than native spores. Resistance to lysozyme of H spores was restored by calcium loading.

متن کامل

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 191 12  شماره 

صفحات  -

تاریخ انتشار 2009